المعين FOR DUMMIES

المعين for Dummies

المعين for Dummies

Blog Article

المعين: أقطاره متعامدة، ولكن أطوالها غير متساوية، كما أنها تشكل زاوية داخلية قائمة في المركز.[٣]

عند توصيل نقاط المنتصف لأضلاع المعين مع بعضها يمكننا الحصول على مستطيل داخل المعين.

حيث يكون نصف المعين على شكل مثلث متساوي الساقين قاعدته هي قطر المعين، فإن:

يُكتب المحتوى على ويكي هاو بأسلوب الويكي أو الكتابة التشاركية؛ أي أن أغلبية المقالات ساهم في كتابتها أكثر من مؤلف، عن طريق التحرير والحذف والإضافة للنص الأصلي.

اقام سعادة السفير/ خالد بن حمود القحطاني مأدبة غداء على شرف here سعادة الأستاذ/ أمير أجود السفير المعين لجمهورية سريلانكا لدى المملكة العربية السعودية، وذلك بحضور أصحاب السعادة رؤساء بعثات الدول العربية المعتمدين لدى ...

قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.

يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]

تعرف مساحة المعين بأنها الحيز المحصور داخل المعين في المستوى ثنائي الأبعاد،[٢] ويمكن التعبير عنها رياضيًا حسب العلاقات الآتية:[٣]

يعتبر المربع والمعين من الأشكال الرباعية الهندسية التي نراها كل يوم، فعلى سبيل المثال، نرى شكل المربع في الطاولات، وصناديق البيتزا، بينما نرى الألماس والطائرة الورقية تتخذ شكل المعين، وغالباً يعتبر المربع معينًا لأنه يطبق خصائص المعين، أما المعين فلا يعتبر مربع، وذلك بسبب اختلاف بعض الخصائص الأخرى بينهما.[١]

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

ومن خواصّ المعين أنّ زواياه المتقابلتين متساويتان؛ (أقل من تسعين درجة)، وأنّ الزاويتين المتبقّيتين متساويتان؛ (أكبر من تسعين درجة)، بكلمات وعبارات أخرى زاويتان متقابلتان منفرجتان، و زاويتان متقابلتان حادّتان.

المتابعة عن طريق جوجل أو عن طريق البريد الالكتروني

يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:

 ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:

يمكن حساب مساحة المعيّن إذا كانت أطوال أٌقطاره معلومة وفق العلاقة الرياضية التالية:

Report this page